
Louisiana State University

44

CSC3501

§ Temporary website: http://www.haow.ca/csc3501/
§ Online video + Slides + Assignments

§ Zoom link
§ Meeting ID: 315 813 3353
§ Passcode: csc3501

http://www.haow.ca/csc3501/

Louisiana State University

45

Given an array of positive integers. All numbers
occur even number of times except one number
which occurs odd number of times. Find the
number in O(n) time & constant space.

Examples :

Input : arr = {1, 2, 3, 2, 3, 1, 3}
Output : 3

Input : arr = {5, 7, 2, 7, 5, 2, 5}
Output : 5

Louisiana State University

46

// C program to find the element
// occurring odd number of times
#include <stdio.h>

// Function to find element occurring
// odd number of times

int getOddOccurrence(int ar[], int ar_size) {
int res = 0;
for (int i = 0; i < ar_size; i++)

res = res ^ ar[i];

return res;
}

/* Driver function to test above function */
int main() {

int ar[] = {2, 3, 5, 4, 5, 2, 4, 3, 5, 2, 4, 4, 2};
int n = sizeof(ar) / sizeof(ar[0]);

// Function calling
printf("%d", getOddOccurrence(ar, n));
return 0;

}

Louisiana State University

47

Today: Bits, Bytes, and Integers
§ Representing information as bits

§ Bit-level manipulations

§ Integers
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting

§ Representations in memory, pointers, strings

§ Summary

Louisiana State University

48

Unsigned Addition

§ Unsigned Addition Range

§ Standard Addition Function
§ Ignores carry output

§ Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

Louisiana State University

49

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

§Integer Addition
§ 4-bit integers u, v
§ Compute true sum

Add4(u , v)
§ Values increase linearly

with u and v
§ Forms planar surface

Add4(u , v)

u

v

Louisiana State University

50

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

§ Wraps Around
§ If true sum ≥ 2w

§ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

Louisiana State University

51

Two’s Complement Addition

§ TAdd and UAdd have Identical Bit-Level Behavior
§ Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v

§ Will give s == t

• • •
• • •

u
v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

Louisiana State University

52

TAdd Overflow

§ Functionality
§ True sum requires w+1 bits
§ Drop off MSB
§ Treat remaining bits as 2’s

comp. integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum
TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

Positive Overflow

Negative Overflow

§ Two’s Comp. Addition Range:

Louisiana State University

53

-8 -6 -4 -2 0 2 4 6
-8

-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

§ Values
§ 4-bit two’s comp.
§ Range from -8 to +7

§ Wraps Around
§ If sum ³ 2w–1

§ Becomes negative
§ At most once

§ If sum < –2w–1

§ Becomes positive
§ At most once

TAdd4(u , v)

u

v
PosOver

NegOver

Louisiana State University

54

Two’s-Complement Negation
§ For w-bit two’s-complement addition

§ TMin is its own additive

§ inverse, while any other value x has −x
as its additive inverse.

0

-2w-1

2w-1-1
Tmax

Tmin

Section 2.3 Integer Arithmetic 131

return tadd_ok(x , - y) ;
}

For what values of x and y will this function give incorrect results? Writing a
correct version of this function is left as an exercise (Problem 2.74).

2.3.3 Two’s-Complement Negation

We can see that every number x in the range TMinw ≤ x ≤ TMaxw has an additive
inverse under +t

w, which we denote - t
w x as follows:

principle: Two’s-complement negation

For x in the range TMinw ≤ x ≤ TMaxw, its two’s-complement negation - t
w x is

given by the formula

- t
w x =

{
TMinw, x = TMinw

−x, x > TMinw

(2.15)

That is, for w-bit two’s-complement addition, TMinw is its own additive in-
verse, while any other value x has −x as its additive inverse.

derivation: Two’s-complement negation

Observe that TMinw + TMinw = −2w−1 + −2w−1 = −2w. This would cause nega-
tive overflow, and hence TMinw +t

w TMinw = −2w + 2w = 0. For values of x such
that x > TMinw, the value −x can also be represented as a w-bit two’s-complement
number, and their sum will be −x + x = 0.

Practice Problem 2.33 (solution page 189)

We can represent a bit pattern of length w = 4 with a single hex digit. For a two’s-
complement interpretation of these digits, fill in the following table to determine
the additive inverses of the digits shown:

x - t
4 x

Hex Decimal Decimal Hex

2
3
9
B
C

What do you observe about the bit patterns generated by two’s-complement
and unsigned (Problem 2.28) negation?

132 Chapter 2 Representing and Manipulating Information

Web Aside DATA:TNEG Bit-level representation of two’s-complement negation

There are several clever ways to determine the two’s-complement negation of a value represented
at the bit level. The following two techniques are both useful, such as when one encounters the value
0xf f f f f f fa when debugging a program, and they lend insight into the nature of the two’s-complement
representation.

One technique for performing two’s-complement negation at the bit level is to complement the bits
and then increment the result. In C, we can state that for any integer value x, computing the expressions
- x and ~x + 1 will give identical results.

Here are some examples with a 4-bit word size:

!x ~!x incr(~!x)

[0101] 5 [1010] −6 [1011] −5
[0111] 7 [1000] −8 [1001] −7
[1100] −4 [0011] 3 [0100] 4
[0000] 0 [1111] −1 [0000] 0
[1000] −8 [0111] 7 [1000] −8

For our earlier example, we know that the complement of 0xf is 0x0 and the complement of 0xa
is 0x5, and so 0xf f f f f f fa is the two’s-complement representation of −6.

A second way to perform two’s-complement negation of a number x is based on splitting the bit
vector into two parts. Let k be the position of the rightmost 1, so the bit-level representation of x has the
form [xw−1, xw−2, . . . , xk+1, 1, 0, . . . 0]. (This is possible as long as x #= 0.) The negation is then written
in binary form as [~xw−1, ~xw−2, . . . ~ xk+1, 1, 0, . . . , 0]. That is, we complement each bit to the left of
bit position k.

We illustrate this idea with some 4-bit numbers, where we highlight the rightmost pattern 1, 0, . . . , 0
in italics:

x −x

[1100] −4 [0100] 4
[1000] −8 [1000] −8
[0101] 5 [1011] −5
[0111] 7 [1001] −7

2.3.4 Unsigned Multiplication

Integers x and y in the range 0 ≤ x, y ≤ 2w − 1 can be represented as w-bit un-
signed numbers, but their product x . y can range between 0 and (2w − 1)2 =
22w − 2w+1 + 1. This could require as many as 2w bits to represent. Instead, un-
signed multiplication in C is defined to yield the w-bit value given by the low-order
w bits of the 2w-bit integer product. Let us denote this value as x *u

w y.
Truncating an unsigned number to w bits is equivalent to computing its value

modulo 2w, giving the following:

Louisiana State University

55

Multiplication

Louisiana State University

56

Multiplication
§ Goal: Computing Product of w-bit numbers x, y

§ Either signed or unsigned

§ But, exact results can be bigger than w bits
§ Unsigned: up to 2w bits

§ Result range: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1
§ Two’s complement min (negative): Up to 2w-1 bits

§ Result range: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

§ Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

§ Result range: x * y ≤ (–2w–1) 2 = 22w–2

§ So, maintaining exact results…
§ would need to keep expanding word size with each product computed
§ is done in software, if needed

§ e.g., by “arbitrary precision” arithmetic packages

Louisiana State University

57

Unsigned Multiplication in C

§ Standard Multiplication Function
§ Ignores high order w bits

§ Implements Modular Arithmetic
UMultw(u , v)= u · v mod 2w

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

Louisiana State University

58

Signed Multiplication in C

§ Standard Multiplication Function
§ Ignores high order w bits
§ Some of which are different for signed vs. unsigned multiplication
§ Lower bits are the same

• • •
• • •

u
v*

• • •u · v

• • •
True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

Louisiana State University

59

Example
134 Chapter 2 Representing and Manipulating Information

Mode x y x . y Truncated x . y

Unsigned 5 [101] 3 [011] 15 [001111] 7 [111]
Two’s complement −3 [101] 3 [011] −9 [110111] −1 [111]

Unsigned 4 [100] 7 [111] 28 [011100] 4 [100]
Two’s complement −4 [100] −1 [111] 4 [000100] −4 [100]

Unsigned 3 [011] 3 [011] 9 [001001] 1 [001]
Two’s complement 3 [011] 3 [011] 9 [001001] 1 [001]

Figure 2.27 Three-bit unsigned and two’s-complement multiplication examples.
Although the bit-level representations of the full products may differ, those of the
truncated products are identical.

derivation: Bit-level equivalence of unsigned and two’s-complement multipli-
cation

From Equation 2.6, we have x′ = x + xw−12w and y′ = y + yw−12w. Computing the
product of these values modulo 2w gives the following:

(x′ . y′) mod 2w = [(x + xw−12w) . (y + yw−12w)] mod 2w (2.18)

= [x . y + (xw−1y + yw−1x)2w + xw−1yw−122w] mod 2w

= (x . y) mod 2w

The terms with weight 2w and 22w drop out due to the modulus operator. By Equa-
tion 2.17, we have x *t

w y = U2Tw((x . y) mod 2w). We can apply the operation
T2Uw to both sides to get

T2Uw(x *t
w y) = T2Uw(U2Tw((x . y) mod 2w)) = (x . y) mod 2w

Combining this result with Equations 2.16 and 2.18 shows that T2Uw(x *t
w y) =

(x′ . y′) mod 2w = x′ *u
w y′. We can then apply U2Bw to both sides to get

U2Bw(T2Uw(x *t
w y)) = T2Bw(x *t

w y) = U2Bw(x′ *u
w y′)

Practice Problem 2.34 (solution page 189)

Fill in the following table showing the results of multiplying different 3-bit num-
bers, in the style of Figure 2.27:

Mode x y x . y Truncated x . y

Unsigned [100] [101]
Two’s complement [100] [101]

Unsigned [010] [111]
Two’s complement [010] [111]

Louisiana State University

60

Power-of-2 Multiply with Shift
§ Operation

§ u << k gives u * 2k

§ Both signed and unsigned

§ Examples
§ u << 3 == u * 8
§ (u << 5) – (u << 3)== u * 24
§ Most machines shift and add faster than multiply

§ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u
2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

Louisiana State University

61

Unsigned Power-of-2 Divide with Shift
§ Quotient of Unsigned by Power of 2

§ u >> k gives ë u / 2k û
§ Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u
2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••Result:

.

Binary Point

0

0 0 0•••0

Louisiana State University

62

Two’s-Complement Division with Shift
§ Quotient of Unsigned by Power of 2

§ u >> k gives ë u / 2k û
§ Uses logical shift

Section 2.3 Integer Arithmetic 141

k >> k (binary) Decimal −12,340/2k

0 1100111111001100 −12,340 −12,340.0
1 1110011111100110 −6,170 −6,170.0
4 1111110011111100 −772 −771.25
8 1111111111001111 −49 −48.203125

Figure 2.29 Applying arithmetic right shift. The examples illustrate that arithmetic
right shift is similar to division by a power of 2, except that it rounds down rather than
toward zero.

This bit vector has numeric value x′, which we have seen is the value that would
result by computing the expression x >> k.

The case for dividing by a power of 2 with two’s-complement arithmetic is
slightly more complex. First, the shifting should be performed using an arithmetic
right shift, to ensure that negative values remain negative. Let us investigate what
value such a right shift would produce.

principle: Two’s-complement division by a power of 2, rounding down

Let C variables x and k have two’s-complement value x and unsigned value
k, respectively, such that 0 ≤ k < w. The C expression x >> k, when the shift is
performed arithmetically, yields the value $x/2k%.

For x ≥ 0, variable x has 0 as the most significant bit, and so the effect of an
arithmetic shift is the same as for a logical right shift. Thus, an arithmetic right shift
by k is the same as division by 2k for a nonnegative number. As an example of a
negative number, Figure 2.29 shows the effect of applying arithmetic right shift to
a 16-bit representation of −12,340 for different shift amounts. For the case when
no rounding is required (k = 1), the result will be x/2k. When rounding is required,
shifting causes the result to be rounded downward. For example, the shifting right
by four has the effect of rounding −771.25 down to −772. We will need to adjust
our strategy to handle division for negative values of x.

derivation: Two’s-complement division by a power of 2, rounding down

Let x be the two’s-complement integer represented by bit pattern [xw−1, xw−2,

. . . , x0], and let k be in the range 0 ≤ k < w. Let x′ be the two’s-complement
number represented by the w − k bits [xw−1, xw−2, . . . , xk], and let x′′ be the
unsigned number represented by the low-order k bits [xk−1, . . . , x0]. By a similar
analysis as the unsigned case, we have x = 2kx′ + x′′ and 0 ≤ x′′ < 2k, giving x′ =
$x/2k%. Furthermore, observe that shifting bit vector [xw−1, xw−2, . . . , x0] right
arithmetically by k yields the bit vector

[xw−1, . . . , xw−1, xw−1, xw−2, . . . , xk]

which is the sign extension from w − k bits to w bits of [xw−1, xw−2, . . . , xk]. Thus,
this shifted bit vector is the two’s-complement representation of $x/2k%.

1 1 1 0 0 0•••

u
2k/

u / 2kDivision:

Operands:
•••

••• •••

•••0 1 1••• •••

•••Result:

.

Binary Point

1

0 1 1•••1

Louisiana State University

63

Two’s-Complement Division with Shift
§ Correction

§ Adding a bias to fix
§ (u+ (1 << k) -1) >> k gives ⌈u/2k⌉.

142 Chapter 2 Representing and Manipulating Information

k Bias −12,340 + bias (binary) >> k (binary) Decimal −12,340/2k

0 0 1100111111001100 1100111111001100 −12,340 −12,340.0
1 1 1100111111001101 1110011111100110 −6,170 −6,170.0
4 15 1100111111011011 1111110011111101 −771 −771.25
8 255 1101000011001011 1111111111010000 −48 −48.203125

Figure 2.30 Dividing two’s-complement numbers by powers of 2. By adding a bias
before the right shift, the result is rounded toward zero.

We can correct for the improper rounding that occurs when a negative number
is shifted right by “biasing” the value before shifting.

principle: Two’s-complement division by a power of 2, rounding up

Let C variables x and k have two’s-complement value x and unsigned value k,
respectively, such that 0 ≤ k < w. The C expression (x + (1 << k) - 1) >> k, when
the shift is performed arithmetically, yields the value #x/2k$.

Figure 2.30 demonstrates how adding the appropriate bias before performing
the arithmetic right shift causes the result to be correctly rounded. In the third
column, we show the result of adding the bias value to −12,340, with the lower k

bits (those that will be shifted off to the right) shown in italics. We can see that
the bits to the left of these may or may not be incremented. For the case where no
rounding is required (k = 1), adding the bias only affects bits that are shifted off.
For the cases where rounding is required, adding the bias causes the upper bits to
be incremented, so that the result will be rounded toward zero.

The biasing technique exploits the property that #x/y$ = %(x + y − 1)/y& for
integers x and y such that y > 0. As examples, when x = −30 and y = 4, we have
x + y − 1 = −27 and #−30/4$ = −7 = %−27/4&. When x = −32 and y = 4, we have
x + y − 1 = −29 and #−32/4$ = −8 = %−29/4&.

derivation: Two’s-complement division by a power of 2, rounding up

To see that #x/y$ = %(x + y − 1)/y&, suppose that x = qy + r , where 0 ≤ r < y,
giving (x + y − 1)/y = q + (r + y − 1)/y, and so %(x + y − 1)/y& = q + %(r + y −
1)/y&. The latter term will equal 0 when r = 0 and 1 when r > 0. That is, by adding
a bias of y − 1 to x and then rounding the division downward, we will get q when
y divides x and q + 1 otherwise.

Returning to the case where y = 2k, the C expression x + (1 << k) - 1 yields
the value x + 2k − 1. Shifting this right arithmetically by k therefore yields #x/2k$.

These analyses show that for a two’s-complement machine using arithmetic
right shifts, the C expression

(x<0 ? x+(1<<k) - 1 : x) >> k

will compute the value x/2k.

Louisiana State University

64

Today: Bits, Bytes, and Integers
§ Representing information as bits

§ Bit-level manipulations

§ Integers
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

§ Representations in memory, pointers, strings

Louisiana State University

65

Arithmetic: Basic Rules
§ Addition:

§ Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

§ Unsigned: addition mod 2w

§ Mathematical addition + possible subtraction of 2w

§ Signed: modified addition mod 2w (result in proper range)
§ Mathematical addition + possible addition or subtraction of 2w

§ Multiplication:
§ Unsigned/signed: Normal multiplication followed by truncate,

same operation on bit level
§ Unsigned: multiplication mod 2w

§ Signed: modified multiplication mod 2w (result in proper range)

Louisiana State University

66

Why Should I Use Unsigned?
§ Don’t use without understanding implications

§ Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];

§ Can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . .

Louisiana State University

67

Counting Down with Unsigned
§ Proper way to use unsigned as loop index

unsigned i;
for (i = cnt-2; i < cnt; i--)
a[i] += a[i+1];

§ See Robert Seacord, Secure Coding in C and C++
§ C Standard guarantees that unsigned addition will behave like modular

arithmetic
§ 0 – 1 à UMax

§ Even better
size_t i;
for (i = cnt-2; i < cnt; i--)
a[i] += a[i+1];

§ Data type size_t defined as unsigned value with length = word size

§ Code will work even if cnt = UMax
§ What if cnt is signed and < 0?

Louisiana State University

68

§ If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

size_t i;
for (i = cnt-2; i < cnt;
i--)
a[i] += a[i+1];

What if cnt is signed and < 0?

Louisiana State University

69

Why Should I Use Unsigned? (cont.)
§ Do Use When Performing Modular Arithmetic

§ Multiprecision arithmetic

§ Do Use When Using Bits to Represent Sets
§ Logical right shift, no sign extension

Louisiana State University

70

Today: Bits, Bytes, and Integers
§ Representing information as bits

§ Bit-level manipulations

§ Integers
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

§ Representations in memory, pointers, strings

Louisiana State University

71

Turing Machine

Louisiana State University

72

Turing Machine
§ Proposed by Alan Turing in 1936

Louisiana State University

73

Byte-Oriented Memory Organization

§ Programs refer to data by address
§ Conceptually, envision it as a very large array of bytes

§ In reality, it’s not, but can think of it that way
§ An address is like an index into that array

§ and, a pointer variable stores an address

§ Note: system provides private address spaces to each “process”
§ Think of a process as a program being executed
§ So, a program can clobber its own data, but not that of others

• • •
00
••
•0

FF
••
•F

Louisiana State University

74

Machine Words
§ Any given computer has a “Word Size”
§ Nominal size of integer-valued data

§ and of addresses

§ Until recently, most machines used 32 bits (4 bytes) as word size
§ Limits addresses to 4GB (232 bytes)

§ Increasingly, machines have 64-bit word size
§ Potentially, could have 18 EB (exabytes) of addressable memory
§ That’s 18.4 X 1018

§ Machines still support multiple data formats
§ Fractions or multiples of word size
§ Always integral number of bytes

Louisiana State University

75

Word-Oriented Memory Organization
§ Addresses Specify Byte

Locations
§ Address of first byte in word
§ Addresses of successive words differ

by 4 (32-bit) or 8 (64-bit)
§ Addresses of multi-byte data items

are typically aligned according to the
size of the data.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

Louisiana State University

76

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

Louisiana State University

77

Byte Ordering
§ So, how are the bytes within a multi-byte word ordered in

memory?

§ Conventions
§ Big Endian: Sun, PPC Mac, Internet

§ Least significant byte has highest address
§ Little Endian: x86, ARM processors running Android, iOS, and

Windows
§ Least significant byte has lowest address

Louisiana State University

78

Byte Ordering Example

§ Example
§ Variable x has 4-byte value of 0x01234567
§ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Louisiana State University

79

Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun
6D
3B
00
00

IA32

Louisiana State University

80

Examining Data Representations
§ Code to Print Byte Representation of Data
§ Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
size_t i;
for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);
printf("\n");

}

Louisiana State University

81

show_bytes Execution Example
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

Louisiana State University

82

Representing Pointers

Different compilers & machines assign different locations to objects
Even get different results each time run program

int B = -15213;
int *P = &B;

x86-64Sun IA32
EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

Louisiana State University

83

char S[6] = "18213";

Representing Strings

§ Strings in C
§ Represented by array of characters
§ Each character encoded in ASCII format

§ Standard 7-bit encoding of character set
§ Character “0” has code 0x30

– Digit i has code 0x30+i
§ String should be null-terminated

§ Final character = 0

§ Compatibility
§ Byte ordering not an issue

IA32 Sun
31

38

32

31

33

00

31

38

32

31

33

00

Louisiana State University

84

7-bit character
set encoding

