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Given an array of positive integers. All numbers
occur even number of times except one number
which occurs odd number of times. Find the

number in O(n) time & constant space.

Examples :

Input : arr
Output : 3

@2, 3, 2, 3, (1, 3)

PaN

Input : arr {5, 7, 2, 7, 5, 2, 5}

Output : 5
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// C program to find the element
// occurring odd number of times

#include <stdio.h> Q@ Q
S ANC)
// Function to find element occurring d /
// odd number of times
, — ) O d |

int getOddOccurrence(lnt ar[], int ar_size) {
int res = @; = 2r-size) /\sroo(o

Nt 1 = 0; 1 < ar_size; i++) —

res ~ ar[i];

O 0O [
return res;

} _ 8 |
/ —
/* Driver function to test above function */

int main() {
int ar[] = 5, 4, S,E} 4, 3, 5, 2, 4, 4, 2};
int n = sizeof(ar) / sizeof(ar[0]);

// Function calling
printf("%d", getOddOccurrence(ar, n));
return O;
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Today: Bits, Bytes, and Integers

O
O
" Integers
¥
o
o
= Addition, negation, multiplication, shifting
O
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Unsighed Addition
Operands: w bits u il
+ Vv o0 0
True Sum: w+1 bits U4 v —
Discard Carry: w bits UAdd, (u ,v) XK
" Unsigned Addition Range [ (o ’ /2
J
® Standard Addition Function RS (7
" |gnores carry output _9—_7\
" Implements Modular Arithmetic [ 7 |0 2
s = UAdd,(u,v) = u+v mod2v <

48



Visualizing (Mathematical) Integer Addition

1 S
" Integer Addition Add,(u, v) .
= 4-bit integers u, v @M , -C

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

y Q

" Forms planar surface

.
L)
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Visualizing Unsigned Addition

" Wraps Around
" |f true sum = 2%
= At most once

True Sum

w+l+
2 Overflow

2 T_I

0

Modular Sum

Overflow

UAdd,(u, v)
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Two’s Complement Addition

Operands: w bits 17 0o

+ V o 00
True Sum: w+1 bits U+ —
Discard Carry: w bits TAdd, (u ,v) ceoe

¥ TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C: (1 a ! (- 3)

int s, t, u, v;
s = (int) ((unsigned) u + (uns:l.gned) v) ; ( ol O (‘_{)

t=u+v //o -
= Willgive s == t O(O// Ie __@0 | C"/‘?)
- | O8O0 2>
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TAdd Overflow

True Sum y
" Functionality 0111..1 = TAdd Resul
" True sum requires w+1 bits fipsitive Overflow
= Drop off MSB 0100..0 ’B 011..1
" Treat remaining bits as 2’s
comp. integer 0 000...0 + o000
%
O\l ( I ‘(_7 1011..1 -
—2w-1 T - 100..0
—
O [ o [
1 000...0 ow 1 Negative Overflow

[{oD ~4
. TwosComp Addition Range: 7

[ 5" (7 &) @U’jyxzj
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Visualizing 2’s Complement Addition

N

—————

" values
= 4-bit two’s comp.

= Range from -8 to +7

" Wraps Around
= |f sum > 2wt
mgative
= At most once
" |f sum <—2w-1
= Becomes positive
= At most once
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Two’s-Complement Negation

" For w-bit two’s-complement addition
= TMin is its own additive

Tmax " inverse, while any other value x has -x
2711 1 T as its additive inverse.
: t I'Min,, x=1TMin,

- x f— .
2wt L w —X, x > TMin,,
Tmin

X —X
.

[z00) (4 ) (iozooi] (2)

[1000] —8 [1000] —8

[0107] 5 [1017] -5

o117 7 [1001] —7
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Multiplication

Q:l 0 lT (13);9 Multiplicand M
@0 @@/(1 1),y Multiplier Q
g

|

] 1 0 1 Partial products
00 % I
110
L0001 111 (143)10 Product P

_—
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Multiplication

" Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

¥ But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2%2 = 22w —-2w*l + 1
= Two’s complement min (negative): Up to 2w-1 bits
= Result range: x * y > (=27 1)*(2w1-1) = —22w=24 w1
= Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?
= Result range: x * y < (—2w1)2 = 22w
® So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages
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Unsigned Multiplication in C

u
Operands: w bits %\
* Vv o0

True Product: 2*w bits U % oo ° o0

. . ) | UMU.ltW(M .,V )
Discard w bits: w bits
Ao —~ <

" Standard Multiplication Function O ||

= |gnores high order w bits

. . QO (™|
" Implements Modular Arithmetic
UMult,(u,v)= u -v mod 2 ol 2 ]
D200

2(Twoof 1L ~f 212
cAS ONIFPY "”9 i
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Signed Multiplication in C

l/t o 00
Operands: w bits
* Vv o000
True Product: 2*w bits U ° V s e s o
. . ) TMultw(l/l . V) co o0
Discard w bits: w bits
(o[ (=)
® Standard Multiplication Function [ | (O ( PQ)
= |gnores high order w bits A oo b
= Some of which are different for signed vs. unfigrred Bqultiplication é
= Lower bits are the same ,
— IR | €2
| -
[ ~—

T ( []0._6
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Example

AN
Mode X y \x : Truncated x - y
Unsigned 5 [101] 3 [011] 15 1001)111] 7 [111] )
— N — —
Two’s complement -3 [101] 3 [011] -9 |[110111] —1 [111]
Unsigned 4 [100] 7 [111] 28 |[0] 1100] 4 [100]
Two’s complement —4  [100] —1 [111] 4 (lm —4 [100]
. 4 — Bt
Unsigned 3 [011] 3 [011] 9 {[001001] 1 [001]
Two’s complement 3 [011] 3 [011] 9 }[()()1001] 1 [001]
Figure 2.27 Three-bit unsigned and two’s-compl nt multiplication examples.

Although the bit-level representations of the full products may differ, those of the
truncated products are identical.
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Power-of-2 Multiply with Shift

" Operatio

'@ esu * 2k

= Both signed and unsigned k

Operands: w bits

* 2k O] eee |0]1]0] eee |O]O
True Product: w+k bits u - 2k o0 0] eee |OJ|O
Discard k bits: w bits UMult,(u,2%) [ eee 0] eee [0]0
TMult,(u , 2%
¥ Examples
P o[ o (é)
" u << ﬁ-zxu * 8
o << 5) — (u << 3)== l<<

5 st machines shift and ltiply ~

= Compiler generates this code automatically

L x> =10
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Unsigned Power-of-2 Divide with Shift

" Quotient of Unsigned by Power c
"u >> kgivem @

= Uses logical shift

k
u cee see Binary Point
Operands:
/ 2k O] eee |0]1]0] eee |O]O
Division: u/2k [0l eee 10]0 T W BT
Result: | 4/ 2k | [0l _eee Tof0 oee
Division~_| Computed | Hex Binary

x ( 15213Y~  15213| 3B 6D| 00111011 01101101

x >> 1 T606.5 (7606} 1D B6| (0P011101 10110110 —>

x >> 4 950.8125 950| 03 B6| (00060011 10110110]

x >> 8 |(59.4257813 ) %3._ 00 3B|00000000~00111011
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Two’s-Complement Division with Shift

" Quotient of Unsigned by Power of 2
= u > kgives Lu / 2¢]
= Uses logical shift

u cee see Binary Point
Operands: /
/ 2k 11 eee |11110]| eee |OI0
Division: u/2k |1l eee J1]1 f( ooC
Result: 1] eee f1)1
N~

k Q>> k (binaryD Decimal —12,340/2k

0 1100111111001100 —12,340 —12,340.0

1 1110011111100110 —6,170 —6,170.0 =)

4 1111110011111100== ( —771?\25_55

8 1111111111001111 —49 —48.203125
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Two’s-Complement Division with Shift

¥ Correction
= Adding o fix

" (u+(1<<k)-1)>>kgives [u/2K].

it 5

k Bias —12,340 + bias (binary) >> k (binary) Decimal —12,340/2K
0 0 1100111111001100 1100111111001100 —12,340 —12,340.0

1 1 110011111100110: 1110011111100110 —6,170 —6,170.0

4 15 1100111111011011 1111110011111101 771 )
8 255 11010000:1001011 1111111111010000 ——/48- —48.203125

=
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Today: Bits, Bytes, and Integers

" Integers

=" Summary
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Arithmetic: Basic Rules

" Addition:
= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level -

= Unsigned: addition(m@
N
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

" Multiplication:
= Unsigned/signed: Wltiplication followed by truncate,
same operation onbit level
= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

-

-_—
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Why Should | Use Unsigned?

" Don’t use without understanding implications
istakes l — 0O

T v LA § A
for (i = cnt-2; i >=—— —_—
al[i] += a[i+l1]; Z

" Can be very subtle @ \/
#define DELTA sizeof (int

int i; (A

for (i = CNT; i-DELTA >= 0; i-= DELTA)

—_—
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Counting Down with Unsigned

" Proper way to use unsigned as loop index

: e
@; 1--)

for (i = cnt-2; i <
a[i] += a[i+l]; _~

® See Robert Seacord, Secure Coding in C and C++
= (CStandard guarantees that unsigned addition will behave like modular

arithmetic
= 0—1-2> UMax

" Even better
size t i;
for (i = cnt-2; i < cnt; i--)

af[i] += a[i+l];
" Datatype size t defined as unsigned value witp length = m

" Code will work even if ent = UMax
" Whatif ent is signed and < 0?
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size t{;;)

for (i = cnt-2; i < cnt;

af[i] += a[i+l];

———

What if cnt is signed and < 0?

" If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned
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Why Should | Use Unsigned? (cont.)

" Do Use When Performing Modular Arithmetic

= Multiprecision arithmetic

" Do Use When Using Bits to Represent Sets
® Logical right shift, no sign extension
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Today: Bits, Bytes, and Integers

® Integers

" Representations in memory, pointers, strings
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Turing Machine
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Turing Machine

" Proposed by Alan Turing in 1936

. xﬁ\%

ED s

~

10]0 0

THE IMITA"
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Byte-Oriented Memory Organization

" Programs refer to data by address
= Conceptually, envision it as a very large array of bytes

= In reality, it’s not, but can think of it that way 0\0“1’(

® An address is like an index into that array

= and, a pointer variable stores an addre

® Note: system provides private address spaces to each “process”
= Think of a process as a program being executed _‘9(:%_ =
= So, a program can clobber its own data, but not that of others

AT
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L
Machine Words Z lbf

T

" Any given computer has a ize” 32 @
= Nominal size of integer-valued ‘;’V, ¢ G

- 5
« and of addresses 2 cko/(a[r‘ 9/2“'0*

= Until recently, most machines use(4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

/

(O
" Increasingly, machines have ord size
= Potentially, could have 18 EB (exabytes) of addressable memory
- That's 18.4 X 1018 é'( :
‘-/ ¢ ( - /\
Yt

" Machines still support multiple data formats

= Fractions ormultiples of word size
= Alway6 integral pu
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Word-Oriented Memory Organization

32-bit 64-bit
" Addresses Specify Byte Words Wggse

Locations

Bytes Addr.

= Address of first byte in word

= Addresses of successive words differ
by 4 (32-bit) or 8 (64-bit)

&
\

0008 0012
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Example Data Representations

C Data Type Typlcal 32-bit | Typical 64-bit x86-64

char
—
short 2 2 2
/ (
int 4 4 4 Syvu/ .
long 4 8 8
float 4 4 4
.
double 8 8 8
long double 10/16

(&) @—>0 |
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Byte Ordering

" S0, how are the bytes within a multi-byte word ordered in
memory?

® Conventions
= Big Endiaﬂ@ @
= Least significant byte has highest address

= Littld Endian: x86, ARNLprocessars.rynning Android, iOS, and

Windows

= Least significant byte has lowest address

ool
21 272K7 et SR AT

(T —L 17
lf¢;$)b ™~ T+

[ 2 7 ¢ %
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Byte Ordering Example

" Example

S
= Variable x has 4-byte value o} 0x0 m)

= Address given by &x is 0x100 / -

Big Endian 0x101 0x102 0x103
01 23 45 67 I
G

Little Endian 3 X102 O >
7 45 23 401i
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Decimal: 15213

Representing Integers |Binary: o011 1011 0110 1101
0xX 334D Hex: 3 B 6 D

oo n sy ° o,
int A = = long int C = 15213; b;i

IA32, x86-64 Sun
| IA32 86-6 Sun
Py 6D |- 6D 00 |\
‘| | 3B | o 3B 00
00 } I: 00 3B
00 | \\Q,O/ 6D | .
00
cd 73 [0
Y — 50
00

Two’s complement representation
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Examining Data Representations

® Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer; ,ﬂl
void show bytes (pointer start, size t 1len) {
size t i; —

for (1 = 0; i < len; i++)
printf ("$p\t0x%.2x\n", star il) ;
printf ("\n") ;

} )),o}wte\’ + 51'(_5»@?'

intf directives:

Print pointer ao(odr :
Print Hexadecimal
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show bytes Execution Example

int a = 15213;

prin "int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;
0x7£££b7£71dbc

v
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Representing Pointers

int B = -15213;
Sun IA32 x86-64
EF AC 3C
FF 28 1B
FB F5 FE
2C FF 82
FD
TF
00
00

Different compilers & machinwmpmw

Even get different results each time run program
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Representin

® Strings in C

= Represented by array of characters

= Each character encoded in ASCII format

Louisiana State University

W/Mf ’

= Standard 7-bit encoding of character set

« Character “0” has COJOX?;O

— Digit i has code 0x30+i

= String should be null-terminated

= Final character=0

" Compatibility “9 v
Wss$

IXSv

et oo

/
L

oy

~ §L
char (S[6])= "18213¥;
1A32 Sun
B
|E§3§5 : o 32
31 | 31
33 |
00) |
=
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Basic Character Set!?!
0x00  0x10 ' 0x20 @Oxm 0x50 0x60 0x70
O R} 000 @ A | sp P é p
ox01 £ | _ ! 1| A | Q@ Ta | q
J — 0x02 $ ) " 2 B R b r
= S _> ORS ox03 ¥ | r | # |[|3]| c | s | ¢ | s
x4 & | A | = |4 D | T | d t
\ox05 é | Q | % @/] E | U e u
7-bit character 6w 1 & (6 F Vv | v
. 0x07 | W ' 7 G W g w
set enCOdmg 0x08 o @ 3 | 8| H| X | h | x
0x09 C | © | ) 9o | O Y | i y
OX0OA LF | = | * J | z | j z
0x0OB O | ESC @+ ; K A k a
oxo0C o | £ |, <\l L | O | I 6
0x0D CR e - = M N m A
OX0E A B . > N U n ¥
OXOF & | E / O| § | o
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