Louisiana State University

" Temporary website: http://www.haow.ca/csc3501/
" Online video + Slides + Assignments

¥ Zoom link
= Meeting ID: 315 813 3353
" Passcode: csc3501

44

http://www.haow.ca/csc3501/

Louisiana State University

Given an array of positive integers. All numbers
occur even number of times except one number
which occurs odd number of times. Find the

number in O(n) time & constant space.

Examples :

Input : arr
Output : 3

@2, 3, 2, 3, (1, 3)

PaN

Input : arr {5, 7, 2, 7, 5, 2, 5}

Output : 5

45

Louisiana State University

// C program to find the element
// occurring odd number of times

#include <stdio.h> Q@ Q
S ANC)
// Function to find element occurring d /
// odd number of times
, —) O d |

int getOddOccurrence(lnt ar[], int ar_size) {
int res = @; = 2r-size) /\sroo(o

Nt 1 = 0; 1 < ar_size; i++) —

res ~ ar[i];

O 0O [
return res;

} _ 8 |
/ —
/* Driver function to test above function */

int main() {
int ar[] = 5, 4, S,E} 4, 3, 5, 2, 4, 4, 2};
int n = sizeof(ar) / sizeof(ar[0]);

// Function calling
printf("%d", getOddOccurrence(ar, n));
return O;

46

Louisiana State University

Today: Bits, Bytes, and Integers

O
O
" Integers
¥
o
o
= Addition, negation, multiplication, shifting
O

47

Louisiana State University

Unsighed Addition
Operands: w bits u il
+ Vv o0 0
True Sum: w+1 bits U4 v —
Discard Carry: w bits UAdd, (u ,v) XK
" Unsigned Addition Range [(o ’ /2
J
® Standard Addition Function RS (7
" |gnores carry output _9—_7\
" Implements Modular Arithmetic [7 |0 2
s = UAdd,(u,v) = u+v mod2v <

48

Visualizing (Mathematical) Integer Addition

1 S
" Integer Addition Add,(u, v) .
= 4-bit integers u, v @M , -C

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

y Q

" Forms planar surface

.
L)

49

Louisiana State University

Visualizing Unsigned Addition

" Wraps Around
" |f true sum = 2%
= At most once

True Sum

w+l+
2 Overflow

2 T_I

0

Modular Sum

Overflow

UAdd,(u, v)

50

Louisiana State University

Two’s Complement Addition

Operands: w bits 17 0o

+ V o 00
True Sum: w+1 bits U+ —
Discard Carry: w bits TAdd, (u ,v) ceoe

¥ TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C: (1 a ! (- 3)

int s, t, u, v;
s = (int) ((unsigned) u + (uns:l.gned) v) ; (ol O (‘_{)

t=u+v //o -
= Willgive s == t O(O// Ie __@0 | C"/‘?)
- | O8O0 2>

51

Louisiana State University

TAdd Overflow

True Sum y
" Functionality 0111..1 = TAdd Resul
" True sum requires w+1 bits fipsitive Overflow
= Drop off MSB 0100..0 ’B 011..1
" Treat remaining bits as 2’s
comp. integer 0 000...0 + o000
%
O\l (I ‘(_7 1011..1 -
—2w-1 T - 100..0
—
O [o [
1 000...0 ow 1 Negative Overflow

[{oD ~4
. TwosComp Addition Range: 7

[5" (7 &) @U’jyxzj

Louisiana State University

Visualizing 2’s Complement Addition

N

—————

" values
= 4-bit two’s comp.

= Range from -8 to +7

" Wraps Around
= |f sum > 2wt
mgative
= At most once
" |f sum <—2w-1
= Becomes positive
= At most once

53

Louisiana State University

Two’s-Complement Negation

" For w-bit two’s-complement addition
= TMin is its own additive

Tmax " inverse, while any other value x has -x
2711 1 T as its additive inverse.
: t I'Min,, x=1TMin,

- x f— .
2wt L w —X, x > TMin,,
Tmin

X —X
.

[z00) (4) (iozooi] (2)

[1000] —8 [1000] —8

[0107] 5 [1017] -5

o117 7 [1001] —7

54

Louisiana State University

Multiplication

Q:l 0 lT (13);9 Multiplicand M
@0 @@/(1 1),y Multiplier Q
g

|

] 1 0 1 Partial products
00 % I
110
L0001 111 (143)10 Product P

_—

55

Louisiana State University

Multiplication

" Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

¥ But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2%2 = 22w —-2w*l + 1
= Two’s complement min (negative): Up to 2w-1 bits
= Result range: x * y > (=27 1)*(2w1-1) = —22w=24 w1
= Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?
= Result range: x * y < (—2w1)2 = 22w
® So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

56

Unsigned Multiplication in C

u
Operands: w bits %\
* Vv o0

True Product: 2*w bits U % oo ° o0

. .) | UMU.ltW(M .,V)
Discard w bits: w bits
Ao —~ <

" Standard Multiplication Function O ||

= |gnores high order w bits

. . QO (™|
" Implements Modular Arithmetic
UMult,(u,v)= u -v mod 2 ol 2]
D200

2(Twoof 1L ~f 212
cAS ONIFPY "”9 i

Louisiana State University

Signed Multiplication in C

l/t o 00
Operands: w bits
* Vv o000
True Product: 2*w bits U ° V s e s o
. .) TMultw(l/l . V) co o0
Discard w bits: w bits
(o[(=)
® Standard Multiplication Function [| (O (PQ)
= |gnores high order w bits A oo b
= Some of which are different for signed vs. unfigrred Bqultiplication é
= Lower bits are the same ,
— IR | €2
| -
[~—

T ([]0._6

Louisiana State University

Example

AN
Mode X y \x : Truncated x - y
Unsigned 5 [101] 3 [011] 15 1001)111] 7 [111])
— N — —
Two’s complement -3 [101] 3 [011] -9 |[110111] —1 [111]
Unsigned 4 [100] 7 [111] 28 |[0] 1100] 4 [100]
Two’s complement —4 [100] —1 [111] 4 (lm —4 [100]
. 4 — Bt
Unsigned 3 [011] 3 [011] 9 {[001001] 1 [001]
Two’s complement 3 [011] 3 [011] 9 }[()()1001] 1 [001]
Figure 2.27 Three-bit unsigned and two’s-compl nt multiplication examples.

Although the bit-level representations of the full products may differ, those of the
truncated products are identical.

59

Louisiana State University

Power-of-2 Multiply with Shift

" Operatio

'@ esu * 2k

= Both signed and unsigned k

Operands: w bits

* 2k O] eee |0]1]0] eee |O]O
True Product: w+k bits u - 2k o0 0] eee |OJ|O
Discard k bits: w bits UMult,(u,2%) [eee 0] eee [0]0
TMult,(u , 2%
¥ Examples
P o[o (é)
" u << ﬁ-zxu * 8
o << 5) — (u << 3)== l<<

5 st machines shift and ltiply ~

= Compiler generates this code automatically

L x> =10

60

Louisiana State University

Unsigned Power-of-2 Divide with Shift

" Quotient of Unsigned by Power c
"u >> kgivem @

= Uses logical shift

k
u cee see Binary Point
Operands:
/ 2k O] eee |0]1]0] eee |O]O
Division: u/2k [0l eee 10]0 T W BT
Result: | 4/ 2k | [0l _eee Tof0 oee
Division~_| Computed | Hex Binary

x (15213Y~ 15213| 3B 6D| 00111011 01101101

x >> 1 T606.5 (7606} 1D B6| (0P011101 10110110 —>

x >> 4 950.8125 950| 03 B6| (00060011 10110110]

x >> 8 |(59.4257813) %3._ 00 3B|00000000~00111011

61

Louisiana State University

Two’s-Complement Division with Shift

" Quotient of Unsigned by Power of 2
= u > kgives Lu / 2¢]
= Uses logical shift

u cee see Binary Point
Operands: /
/ 2k 11 eee |11110]| eee |OI0
Division: u/2k |1l eee J1]1 f(ooC
Result: 1] eee f1)1
N~

k Q>> k (binaryD Decimal —12,340/2k

0 1100111111001100 —12,340 —12,340.0

1 1110011111100110 —6,170 —6,170.0 =)

4 1111110011111100== (—771?\25_55

8 1111111111001111 —49 —48.203125

62

Louisiana State University

Two’s-Complement Division with Shift

¥ Correction
= Adding o fix

" (u+(1<<k)-1)>>kgives [u/2K].

it 5

k Bias —12,340 + bias (binary) >> k (binary) Decimal —12,340/2K
0 0 1100111111001100 1100111111001100 —12,340 —12,340.0

1 1 110011111100110: 1110011111100110 —6,170 —6,170.0

4 15 1100111111011011 1111110011111101 771)
8 255 11010000:1001011 1111111111010000 ——/48- —48.203125

=

63

Louisiana State University

Today: Bits, Bytes, and Integers

" Integers

=" Summary

64

Louisiana State University

Arithmetic: Basic Rules

" Addition:
= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level -

= Unsigned: addition(m@
N
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

" Multiplication:
= Unsigned/signed: Wltiplication followed by truncate,
same operation onbit level
= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

-

-_—
65

Louisiana State University

Why Should | Use Unsigned?

" Don’t use without understanding implications
istakes l — 0O

T v LA § A
for (i = cnt-2; i >=—— —_—
al[i] += a[i+l1]; Z

" Can be very subtle @ \/
#define DELTA sizeof (int

int i; (A

for (i = CNT; i-DELTA >= 0; i-= DELTA)

—_—

66

Louisiana State University

Counting Down with Unsigned

" Proper way to use unsigned as loop index

: e
@; 1--)

for (i = cnt-2; i <
a[i] += a[i+l]; _~

® See Robert Seacord, Secure Coding in C and C++
= (CStandard guarantees that unsigned addition will behave like modular

arithmetic
= 0—1-2> UMax

" Even better
size t i;
for (i = cnt-2; i < cnt; i--)

af[i] += a[i+l];
" Datatype size t defined as unsigned value witp length = m

" Code will work even if ent = UMax
" Whatif ent is signed and < 0?

67

Louisiana State University

size t{;;)

for (i = cnt-2; i < cnt;

af[i] += a[i+l];

———

What if cnt is signed and < 0?

" If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

68

Louisiana State University

Why Should | Use Unsigned? (cont.)

" Do Use When Performing Modular Arithmetic

= Multiprecision arithmetic

" Do Use When Using Bits to Represent Sets
® Logical right shift, no sign extension

69

Louisiana State University

Today: Bits, Bytes, and Integers

® Integers

" Representations in memory, pointers, strings

70

Louisiana State University

Turing Machine

Louisiana State University

Turing Machine

" Proposed by Alan Turing in 1936

. xﬁ\%

ED s

~

10]0 0

THE IMITA"

72

Louisiana State University

Byte-Oriented Memory Organization

" Programs refer to data by address
= Conceptually, envision it as a very large array of bytes

= In reality, it’s not, but can think of it that way 0\0“1’(

® An address is like an index into that array

= and, a pointer variable stores an addre

® Note: system provides private address spaces to each “process”
= Think of a process as a program being executed _‘9(:%_ =
= So, a program can clobber its own data, but not that of others

AT

73

Louisiana State University

L
Machine Words Z lbf

T

" Any given computer has a ize” 32 @
= Nominal size of integer-valued ‘;’V, ¢ G

- 5
« and of addresses 2 cko/(a[r‘ 9/2“'0*

= Until recently, most machines use(4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

/

(O
" Increasingly, machines have ord size
= Potentially, could have 18 EB (exabytes) of addressable memory
- That's 18.4 X 1018 é'(:
‘-/ ¢ (- /\
Yt

" Machines still support multiple data formats

= Fractions ormultiples of word size
= Alway6 integral pu

74

Louisiana State University

Word-Oriented Memory Organization

32-bit 64-bit
" Addresses Specify Byte Words Wggse

Locations

Bytes Addr.

= Address of first byte in word

= Addresses of successive words differ
by 4 (32-bit) or 8 (64-bit)

&
\

0008 0012

75

Louisiana State University

Example Data Representations

C Data Type Typlcal 32-bit | Typical 64-bit x86-64

char
—
short 2 2 2
/ (
int 4 4 4 Syvu/ .
long 4 8 8
float 4 4 4
.
double 8 8 8
long double 10/16

(&) @—>0 |

76

Louisiana State University

Byte Ordering

" S0, how are the bytes within a multi-byte word ordered in
memory?

® Conventions
= Big Endiaﬂ@ @
= Least significant byte has highest address

= Littld Endian: x86, ARNLprocessars.rynning Android, iOS, and

Windows

= Least significant byte has lowest address

ool
21 272K7 et SR AT

(T —L 17
lf¢;$)b ™~ T+

[2 7 ¢ %

7

Louisiana State University

Byte Ordering Example

" Example

S
= Variable x has 4-byte value o} 0x0 m)

= Address given by &x is 0x100 / -

Big Endian 0x101 0x102 0x103
01 23 45 67 I
G

Little Endian 3 X102 O >
7 45 23 401i

78

Louisiana State University

Decimal: 15213

Representing Integers |Binary: o011 1011 0110 1101
0xX 334D Hex: 3 B 6 D

oo n sy ° o,
int A = = long int C = 15213; b;i

IA32, x86-64 Sun
| IA32 86-6 Sun
Py 6D |- 6D 00 |\
‘| | 3B | o 3B 00
00 } I: 00 3B
00 | \\Q,O/ 6D | .
00
cd 73 [0
Y — 50
00

Two’s complement representation

79

Louisiana State University

Examining Data Representations

® Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer; ,ﬂl
void show bytes (pointer start, size t 1len) {
size t i; —

for (1 = 0; i < len; i++)
printf ("$p\t0x%.2x\n", star il) ;
printf ("\n") ;

})),o}wte\’ + 51'(_5»@?'

intf directives:

Print pointer ao(odr :
Print Hexadecimal

80

Louisiana State University

show bytes Execution Example

int a = 15213;

prin "int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;
0x7£££b7£71dbc

v

81

Louisiana State University

Representing Pointers

int B = -15213;
Sun IA32 x86-64
EF AC 3C
FF 28 1B
FB F5 FE
2C FF 82
FD
TF
00
00

Different compilers & machinwmpmw

Even get different results each time run program

82

Representin

® Strings in C

= Represented by array of characters

= Each character encoded in ASCII format

Louisiana State University

W/Mf ’

= Standard 7-bit encoding of character set

« Character “0” has COJOX?;O

— Digit i has code 0x30+i

= String should be null-terminated

= Final character=0

" Compatibility “9 v
Wss$

IXSv

et oo

/
L

oy

~ §L
char (S[6])= "18213¥;
1A32 Sun
B
|E§3§5 : o 32
31 | 31
33 |
00) |
=

83

Louisiana State University

Basic Character Set!?!
0x00 0x10 ' 0x20 @Oxm 0x50 0x60 0x70
O R} 000 @ A | sp P é p
ox01 £ | _ ! 1| A | Q@ Ta | q
J — 0x02 $) " 2 B R b r
= S _> ORS ox03 ¥ | r | # |[|3]| c | s | ¢ | s
x4 & | A | = |4 D | T | d t
\ox05 é | Q | % @/] E | U e u
7-bit character 6w 1 & (6 F Vv | v
. 0x07 | W ' 7 G W g w
set enCOdmg 0x08 o @ 3 | 8| H| X | h | x
0x09 C | © |) 9o | O Y | i y
OX0OA LF | = | * J | z | j z
0x0OB O | ESC @+ ; K A k a
oxo0C o | £ |, <\l L | O | I 6
0x0D CR e - = M N m A
OX0E A B . > N U n ¥
OXOF & | E / O| § | o

84

